Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule
نویسندگان
چکیده
OBJECTIVE Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. METHODS The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. RESULTS The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. CONCLUSION Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic compound resveratrol, which has similar efficacy in the reduction of GO to rGO. Resveratrol-based GO reduction would facilitate large-scale production of graphene-based materials for the emerging graphene-based technologies and biomedical applications.
منابع مشابه
Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity
In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...
متن کاملGraphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity
In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...
متن کاملMicrobial Reduction of Graphene Oxide by Lactobacillus Plantarum
Here, we report that the reduced graphene oxide nanosheets were successfully synthesized using the Lactobacillus plantarum biomass in a simple, environmentally friendly and scalable manner. We produced graphene oxide by oxidization and exfoliation of graphite flakes with modified Hummer's method and then reduced to reduced graphene oxide by using Lactobacillus plantarum biomass as a ...
متن کاملSynthesis and Characterization of Graphene Oxide Nanoparticles and investigation of Nanofluid Application in Machining Process
The quality of machined workpieces, particularly precious metals, is the main goal of every machining process. A suitable cutting fluid can substantially affect the machining outcome. The study is novel in that it uses nanofluids in the machining process to mitigate the adverse effects of high temperatures and friction. Graphene oxide (GO) nanoparticles were synthesized using the modified Humme...
متن کاملSynthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method
In this study, an efficient and facile technique for preparing graphene oxide in suspension and powder forms was presented based on a modification on Hummers' method followed by an additional ultrasonic process. The method involved the provision of graphene oxide from graphite by reaction of potassium permanganate and sulfuric acid with stabilizing the medium complex. Furthermore, this study ev...
متن کامل